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Summary: The asymmetric synthesis of 5-substituted 
8-methylindolizidines 1-3 was achieved via the highly 
stereocontrolled Michael reaction of the title compound 
5. 

A number of alkaloids containing the 2,6(cis or trans)- 
disubstituted piperidine ring system are found in nature, 
and many of these alkaloids display significant biological 
activities.' As a consequence, new synthetic strategies2 
and useful chiral building blocks3 have been developed 
for the efficient chiral synthesis of these alkaloids. 
Illustrative of our efforts in this field, we have recently 
reported the synthesis of both enantiomers of the homo- 
chiral piperidine 44 and its application to the synthesis of 
3-piperidinol alkaloids.5 Herein, we describe the highly 
stereocontrolled syntheses of indolizidines 1-3'j starting 
from (-)-4 (Scheme 1). 

The compound 2,3-didehydropiperidine (-)-5a (R = 
TBS, [(uIz6D -54.817 was first examined as a common chiral 
building block for the synthesis of alkaloids 1-3, and the 
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transformation of (-1-4 into (-)-5a was achieved in 87% 
yield (Scheme 2). The versatility of (-1-5 was next 
examined. The Michael reaction of (-)-Sa (R = TBS) 
with MezCuLi in THF was highly stereoselective and gave 
the adduct (+)-6 ([(YlaD +71.2) as a sole product in 92% 
yield. Reduction of (+)-6 with Super-Hydride followed 
by treatment of the resulting alcohol (+)-ti with base 
afforded the oxazolidinone (-1-7 ([(u12$ -10.9). Analysis 
of the coupling patterns of the methine proton at  CZ and 
the methylene protons at  C7 in the IH NMR spectrum of 
(-)-7* suggested that the stereochemistry of t+)-6 could 
be assigned as shown in Scheme 3 by assuming that all the 
ring appendages lie in the equatorial orientation (Scheme 
3). 
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Figure 1. 

The stereoselectivity of the above reaction results from 
the preferred a-axial attack, leading not to the boatlike 
B but to the chairlike transition state Ag where the c6 side 
chain occupies the quasiaxial orientation owing to A(lt3) 

strainlOJ1 (Figure 1). 
The synthesis of alkaloids 1-3 was accomplished as 

follows. The Swern oxidation of (+)-8 ([(UlmD +17.9) 

(a) CH4H(CHa)sMgCl,  CUI, -30 O C  (82% 1; (b)nPrSLi, HMPA; 
(c) concd HCl, MeOH, reflux; (d) Phap, CBr,, EtsN (63% in three 
steps). 

Scheme 6. 
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50 OC (91%); (c) DIBAL, EhO, -78 to 0 "C (70%); (d) NaBHsCN, 
TFA, -42 O C  (trans, 65%, cis, 8%).  
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followed by the Wittig-Horner reaction of the resulting 
aldehyde afforded the a,&unsaturated ester 9 in 90% 
overall yield as a 4:l mixture of the E and 2 isomers. 
Catalytic hydrogenation of 9 over 5% Pd on carbon a t  4 
atm and subsequent reduction of the resulting saturated 
ester with Super-Hydride provided the alcohol (+)-lo 
([(UlmD +21.6) in 91% yield in two steps. Protection of 
the hydroxyl in (+)-lo (93% yield, [ c Y I ~ ~ D  +9.4) followed 
by deprotection at the C6-side chain with TBAF gave the 
alcohol (-1-11 ([aImD -13.8) in 95% yield. The carbon- 
chain elongation of the ring appendage at CS was accom- 
plished by a Grignard cross-coupling reaction involving 
the treatment of the iodide [(-)-12, [(rlBD -22.01, derived 
from (-1-11, with allylmagnesium chloride and CUI a t  -30 
"C, to afford the olefin (+13 ([CulmD -10.9) in 74% yield 
with recovery of the starting iodide (13% 1. 

Finally, removal of the methoxycarbonyl in (-)-13 with 
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(Scheme 6). A 2,6( trans)-disubstituted piperidine is less 
accessible than the corresponding cis counterpart, so the 
carbon-chain elongation of the present trans system (-)- 
17 at the 2- or 6-position would arbitrarily be achieved by 
modification of the hydroxyl functionality to lead to the 
alkaloid of the trans(2,6)-piperidine system. 

In summary, we have demonstrated the versatility of 
the title compound 5 for alkaloid synthesis by the 
asymmetric synthesis of indolizidines 1-3 and by ita 
transformation into the less accessible 2,6(tram)-disub- 
stituted piperidine 17. 

nPrSLi in HMPA,l2 and subsequently the methoxymethyl 
withacid, furnished the aminoalcohol(-)-l4 [[a1%~-16.4 
(lit.a [ c Y I ~ D  -16.511 in 65% overall yield. The spectral 
data (IR, ‘H, 13C NMR and mass) for the (-)-14 were in 
agreement with those rep0rted.a The transformation of 
the amino alcohol (+14 into (-1-1 and (-)-2 has been 
reported by KibayashP (Scheme 4). 

Similarly, the iodide (3-12 was transformedto the olefin 
(-1-15 ([a12$-6.5) in82% yield. Deprotectionof the ring 
nitrogen with “PrSLi and the Cz-appendage with acid 
followed by cyclization of the resulting amino alcohol was 
accomplished according to the Kibayashi protocolz1 to 

(MeOH)] in 63 7% overall yield. The spectral data (IR and 
lH NMR) for (3-3 were identical with those of a natural 
samplesa (Scheme 5). 

The formal synthesis of (-1-1 and (-1-2 and the first 
asymmetric total synthesis of (-)-3 were thus achieved, 
starting with (-)-5a (R = TBS) as a commonchiral building 
block. Our synthesis colifirmed the absolute configuration 
of (3-3 as depicted in Scheme 5. 

We also examined the transformation of (-)-5b (R = 
MOM, [aIz6D -75.2) to the 2,6(trans)-disubstitutred 
piperidine (-)-17. The reduction of (-1-6 (R = MOM) 
with DIBAL gave the allyl alcohol (-)-16 ([a]!% -147.5) 
in 70% yield. Reduction of (3-16 by application of 
Comins’ conditions13 afforded the trans piperidine [(-)- 
17, [(uIz6D -23.01 and the cis piperidine [(+)-18, [ C Y I ~ D  
+11.3114 in 65% and 8% isolated yields, respectively 

furnish (-)-a [[CYIz6D -98.8 (MeOH) (lit.& [CdlZsD -61 
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